A Modified k-ε Closure for Turbulent Self-preserving Jets
نویسندگان
چکیده
منابع مشابه
A “v2-f Based” Macroscopic K-Ε Model for Turbulent Flow through Porous Media
In this paper a new macroscopic k-ε model is developed and validated for turbulent flow through porous media for a wide range of porosities. The morphology of porous media is simulated by a periodic array of square cylinders. In the first step, calculations based on microscopic v2 − f model are conducted using a Galerkin/Least-Squares finite element formulation, employing equalorder bilinear ve...
متن کاملSelf-Energy Closure for Inhomogeneous Turbulent Flows and Subgrid Modeling
A new statistical dynamical closure theory for general inhomogeneous turbulent flows and subgrid modeling is presented. This Self-Energy (SE) closure represents all eddy interactions through nonlinear dissipation or forcing ‘self-energy’ terms in the mean-field, covariance and response function equations. This makes the renormalization of the bare dissipation and forcing, and the subgrid modeli...
متن کاملPatterns in ε ′ / ε and ε K with Implications for Rare Kaon Decays and ∆ M K
The Standard Model (SM) prediction for the ratio ε′/ε appears to be significantly below the experimental data. Also εK in the SM tends to be below the data. Any new physics (NP) removing these anomalies will first of all have impact on flavour observables in the K meson system, in particular on rare decays K+ → π+νν̄, KL → π0νν̄, KL → μ+μ− and KL → π0`+`− and ∆MK . Restricting the operators contr...
متن کاملA statistically accurate modified quasilinear Gaussian closure for uncertainty quantification in turbulent dynamical systems
We develop a novel second-order closure methodology for uncertainty quantification in damped forced nonlinear systems with high dimensional phase-space that possess a highdimensional chaotic attractor. We focus on turbulent systems with quadratic nonlinearities where the finite size of the attractor is caused exclusively by the synergistic activity of persistent, linearly unstable directions an...
متن کاملStructural Stability of Turbulent Jets
Turbulence in fluids is commonly observed to coexist with relatively large spatial and temporal scale coherent jets. These jets may be steady, vacillate with a definite period, or be irregular. A comprehensive theory for this phenomenon is presented based on the mutual interaction between the coherent jet and the turbulent eddies. When a sufficient number of statistically independent realizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of King Saud University - Engineering Sciences
سال: 2003
ISSN: 1018-3639
DOI: 10.1016/s1018-3639(18)30761-x